AMXS SECURITY GRILLE

PERFORMANCE DATA SUPPLY

NECK SIZE		# 2 x 2 Holes		oles	Core Velocity	200	300	400	500	600	700	800	900	1000	1100
Width	Height	# W	# H	Total	P_T	.01	.02	.03	.04	.06	.08	.11	.14	.17	.20
6	6	2	2	4	CFM	20	30	40	60	70	80	90	100	110	120
					NC	<15	<15	<15	<15	18	22	26	29	32	34
					THROW	2 4 9	4 7 12	6 9 14	9 12 17	10 13 18	11 14 19	12 14 20	12 15 21	13 16 22	14 17 23
8	6	3	2	6	CFM	30	50	70	80	100	120	130	150	170	180
					NC	<15	<15	<15	15	20	24	27	30	33	36
					THROW	2 5 11	6 9 15	9 13 18	10 14 19	12 15 21	14 17 23	14 17 24	15 18 26	16 20 28	17 20 29
8	8	3	3	9	CFM	50	80	100	130	150	180	200	230	250	280
					NC	<15	<15	<15	17	22	26	29	32	35	38
					THROW	3 8 15	8 12 19	10 15 21	13 17 24	15 18 26	17 20 29	17 21 30	19 23 32	19 24 34	21 25 36
12	8	4	3	12	CFM	70	100	130	170	200	230	270	300	330	370
					NC	<15	<15	<15	18	23	27	30	33	36	39
					THROW	4 9 18	9 13 21	11 17 24	15 20 28	17 21 30	19 23 32	20 25 35	21 26 37	22 27 39	24 29 41
12	12	4	4	16	CFM	90	130	180	220	270	310	360	400	440	490
					NC	<15	<15	<15	19	24	28	32	35	38	40
					THROW	5 10 20	10 15 24	14 20 29	17 22 32	20 25 35	22 27 38	23 29 41	25 30 43	26 32 45	27 33 47
	8	6	3	18	CFM	100	150	200	250	300	350	400	450	500	550
16					NC	<15	<15	<15	20	25	29	32	35	38	41
					THROW	5 11 21	11 16 26	14 21 30	18 24 34	21 26 37	23 28 40	25 30 43	26 32 45	28 34 48	29 35 50
16	12	6	4	24	CFM	130	200	270	330	400	470	530	600	670	730
					NC	<15	<15	15	21	26	30	33	37	39	42
					THROW	5 12 24	12 18 30	17 25 35	20 27 39	24 30 43	27 33 46	28 35 49	30 37 52	32 39 55	33 41 58
16	14	6	5	30	CFM	170	250	330	420	500	580	670	750	830	920
					NC	<15	<15	16	22	27	31	34	37	40	43
					THROW	7 14 28	14 21 34	18 27 39	23 31 44	27 34 48	30 36 51	32 39 55	34 41 58	36 44 62	37 46 65
18	18	7	7	49	CFM	270	410	540	680	820	950	1090	1230	1360	1500
					NC	<15	<15	18	24	29	33	36	40	42	45
					THROW	8 17 35	18 26 43	23 35 50	29 39 56	35 43 61	38 47 66	41 50 71	43 53 75	45 56 79	48 58 83
24	24	9	9	81	CFM	450	680	900	1130	1350	1580	1800	2030	2250	2480
					NC	<15	<15	20	26	31	35	39	42	45	47
					THROW	10 23 45	23 34 56	30 45 64	38 51 72	45 55 78	49 60 85	52 64 91	56 68 96	58 72 101	61 75 106

Test Standard

ANSI / ASHRAE Standard 70

Sound Levels

- NC is noise criteria curve that will not be exceeded at the operating point.
 This is determined by assuming a 10dB (ref: 10-¹² watts) room attenuation that is subtracted from the power levels in each of the 2nd thru 7th octave bands.
- When a Model OB opposed blade damper is used, see next page (ACCY-P-0001) for NC and pressure adjustments.

Throw

- The numbers shown are throw distances, in feet, measured along the jet trajectory axis relating to terminal velocities of 150, 100, & 50 fpm, with the jet attached to a surface.
- Terminal velocity is the air speed, in feet per minute, measured in the supply air stream.
- Core Velocity: Feet per minute, FPM (CFM/gross area of square holes)

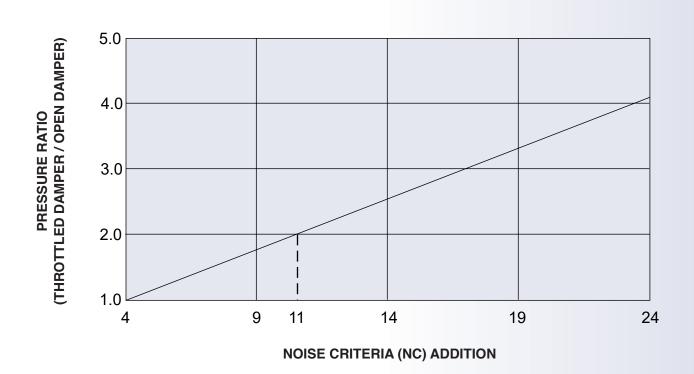
Pressure

• PT is the Total Pressure, inches of water, measured in the supply duct

For Return Use

 \bullet Adjust the above supply data by adding +1 NC and use the PT listed as the -Ps

Closing the damper of a register accomplishes two objectives:


- It restricts the flow of air through the register or diffuser thereby increasing the static pressure drop and decreasing the airflow (CFM).
- The damper also generates sound it increases the NC level.

As a general rule, adding an opposed blade damper to a supply or return grille or diffuser with the damper blades set to 100% open will increase the NC by appoximately 3-4 NC and increase in the static pressure (Ps) by about 20%. Because the purpose of using a damper is to balance the airflow to the design CFM required for the outlet, the damper blades will typically be rotated to some position less than 100% open.

For example, a damper closed sufficiently to double the pressure loss of a register (Pressure Ratio of 2) causes an NC increase of about 7db (see Graph 1 below). As a rule of thumb (and for general reference only), it can be assumed that closing an opposed blade damper to an effective opening ratio of 70% doubles the pressure loss of the open damper/outlet combination. Closing the damper to an effective opening ratio of 50% percent increases the pressure loss to 4 times the open damper/outlet loss.)

Graph 1: THROTTLED OB DAMPER FACTORS

