AMSG MESH SECURITY GRILLE

PERFORMANCE

DATA

NECK	SIZE	Nom Duct Area,	Core Velocity	300	400	500	600	700	800	900	1000	1100	1200
Width	Height	Ft ²	PT	.02	.03	.05	.07	.09	.12	.15	.18	.22	.26
			CFM	30	40	60	70	80	90	100	110	120	130
6	6	.25	NC	<15	<15	<15	<15	16	20	23	26	29	31
			THROW	5 8 12	7 10 14	10 12 17	10 13 18	11 14 19	12 14 20	12 15 21	13 16 23	14 17 24	14 17 25
			CFM	50	70	80	100	120	130	150	170	180	200
8	6	.33	NC	<15	<15	<15	<15	18	22	25	28	30	33
			THROW	7 11 15	10 13 18	11 14 19	12 15 21	14 17 24	14 17 25	15 19 26	16 20 28	17 20 29	18 21 30
			CFM	80	100	130	150	180	200	230	250	280	300
8	8	.44	NC	<15	<15	<15	15	20	23	27	29	32	35
			THROW	10 14 19	12 15 21	14 17 25	15 19 26	17 20 29	18 21 30	19 23 33	20 24 34	21 25 36	21 26 37
			CFM	80	110	140	170	190	220	250	280	310	330
12	6	.50	NC	<15	<15	<15	16	20	24	27	30	33	35
			THROW	9 14 19	12 16 23	15 18 25	16 20 28	17 21 30	18 23 32	20 24 34	21 25 36	22 27 38	23 28 39
			CFM	130	170	210	250	290	330	380	420	460	500
12	8	.67	NC	<15	<15	<15	17	22	25	29	32	34	37
			THROW	12 17 25	16 20 28	18 22 31	20 24 34	21 26 37	23 28 39	24 30 42	25 31 44	27 33 46	28 34 48
			CFM	170	220	280	330	390	440	500	560	610	670
12	10	.83	NC	<15	<15	<15	19	23	27	30	33	36	38
			THROW	14 20 28	18 23 32	21 25 36	23 28 39	25 30 42	26 32 45	28 34 48	29 36 51	31 38 53	32 39 56
			CFM	210	280	350	420	490	560	630	690	760	830
12	12	1.00	NC	<15	<15	15	20	24	28	31	34	37	39
			THROW	15 22 31	20 25 36	23 28 40	25 31 44	27 34 48	29 36 51	31 38 54	33 40 56	34 42 59	36 44 62
			CFM	250	330	420	500	580	670	750	830	920	1000
14	12	1.17	NC	<15	<15	15	21	25	29	32	35	37	40
			THROW	16 24 34	22 28 39	25 31 44	28 34 48	30 37 52	32 39 56	34 42 59	36 44 62	38 46 65	39 48 68
			CFM	300	400	500	600	700	800	900	1000	1100	1200
14	14	1.36	NC	<15	<15	16	21	26	29	33	36	38	41
			THROW	18 26 37	24 30 43	28 34 48	30 37 53	33 40 57	35 43 61	37 46 64	39 48 68	41 50 71	43 53 74
			CFM	410	540	680	820	950	1090	1230	1360	1500	1630
16	16	1.78	NC	<15	<15	18	23	27	31	34	37	40	42
			THROW	21 31 44	28 35 50	32 40 56	36 44 62	38 47 66	41 50 71	44 53 75	46 56 79	48 59 83	50 61 87
			CFM	830	1110	1390	1670	1940	2220	2500	2780	3060	3330
22	22	3.36	NC	<15	<15	21	26	30	34	37	40	43	45
			THROW	30 44 62	40 51 72	46 57 80	51 62 88	55 67 95	58 72 101	62 76 107	65 80 113	69 84 119	72 88 124
			CFM	1010	1340	1680	2020	2350	2690	3030	3360	3700	4030
24	24	4.00	NC	<15	15	21	27	31	35	38	41	43	46
			THROW	33 48 68	44 56 79	51 62 88	56 68 97	60 74 104	64 79 111	68 84 118	72 88 125	75 92 131	79 96 136

Test Standard

ANSI / ASHRAE Standard 70

Sound Levels

- NC is noise criteria curve that will not be exceeded at the operating point. This is determined by assuming a 10dB (ref: 10-¹² watts) room attenuation that is subtracted from the power levels in each of the 2nd thru 7th octave bands.
- When a Model OB opposed blade damper is used, see next page (ACCY-P-0001) for NC and pressure adjustments.

Throw

- The numbers shown are throw distances, in feet, measured along the jet trajectory axis relating to terminal velocities of 150, 100, & 50 fpm, with the jet attached to a surface.
- Terminal velocity is the air speed, in feet per minute, measured in the supply air stream.
- Core Velocity: Feet per minute, FPM (CFM/gross area of mesh face)

Pressure

• PT is the Total Pressure, inches of water, measured in the supply duct

For Return Use

- Adjust the above supply data by adding +1 NC and use the P_T listed as the -Ps

OPPOSED BLADE DAMPER

PERFORMANCE DATA

Closing the damper of a register accomplishes two objectives:

- It restricts the flow of air through the register or diffuser thereby *increasing the static pressure drop* and decreasing the airflow (CFM).
- The damper also generates sound it *increases* the NC level.

|--|

As a general rule, adding an opposed blade damper to a supply or return grille or diffuser with the damper blades set to 100% open will increase the NC by appoximately 3-4 NC and increase in the static pressure (Ps) by about 20%. Because the purpose of using a damper is to balance the airflow to the design CFM required for the outlet, the damper blades will typically be rotated to some position less than 100% open.

For example, a damper closed sufficiently to double the pressure loss of a register (Pressure Ratio of 2) causes an NC increase of about 7db (see Graph 1 below). As a rule of thumb (and for general reference only), it can be assumed that closing an opposed blade damper to an effective opening ratio of 70% doubles the pressure loss of the open damper/outlet combination. Closing the damper to an effective opening ratio of 50% percent increases the pressure loss to 4 times the open damper/outlet loss.)

Graph 1: THROTTLED OB DAMPER FACTORS

NOISE CRITERIA (NC) ADDITION

