performance data

3/4" SPACING

40° DEFLECTION

Nominal Size		Nom	Core	Core Vel, FPM	250	300	350	400	450	500	600	700	800
W	Н	Duct FT ²	Area FT ²										
Width	Height			Ps	01	02	02	03	04	05	07	09	12
6	6	.25	.13	CFM	30	40	40	50	60	60	80	90	100
	0			NC	<20	<20	<20	<20	<20	<20	<20	<20	21
8	6	.33	.18	CFM	50	60	60	70	80	90	110	130	150
	0			NC	<20	<20	<20	<20	<20	<20	<20	<20	22
8	8	.44	.27	CFM	70	80	90	110	120	140	160	190	220
				NC	<20	<20	<20	<20	<20	<20	<20	<20	24
12	6	.50	.30	CFM	80	90	110	120	140	150	180	210	240
				NC	<20	<20	<20	<20	<20	<20	<20	<20	25
10	10	.69	.47	CFM	120	140	170	190	210	240	280	330	380
				NC	<20	<20	<20	<20	<20	<20	<20	21	26
14	8	.78	.53	CFM	130	160	190	210	240	270	320	370	430
				NC	<20	<20	<20	<20	<20	<20	<20	21	27
16	8	.89	.62	CFM	150	190	220	250	280	310	370	430	490
				NC	<20	<20	<20	<20	<20	<20	<20	22	28
12	12	1.00	.73	CFM	180	220	260	290	330	360	440	510	580
				NC	<20	<20	<20	<20	<20	<20	<20	23	28
20	8	1 1 1	.79	CFM	200	240	280	320	360	400	480	550	630
20	0	1.11		NC	<20	<20	<20	<20	<20	<20	<20	23	29
18	10	1.25	.93	CFM	230	280	330	370	420	470	560	650	740
10	10	1.20		NC	<20	<20	<20	<20	<20	<20	<20	24	29
14	14	1,36	1.04	CFM	260	310	360	420	470	520	630	730	830
14	14	1.50		NC	<20	<20	<20	<20	<20	<20	<20	24	30
24	10	1.67	1.27	CFM	320	380	450	510	570	640	760	890	1020
	10			NC	<20	<20	<20	<20	<20	<20	<20	25	31
16	16 16	1.78	1.41	CFM	350	420	490	560	630	710	850	990	1130
16	10			NC	<20	<20	<20	<20	<20	<20	<20	26	31
24	12	2.00	1.58	CFM	400	480	550	630	710	790	950	1110	1270
				NC	<20	<20	<20	<20	<20	<20	20	26	32
22	16	2.44	2.00	CFM	500	600	700	800	900	1000	1200	1400	1600
				NC	<20	<20	<20	<20	<20	<20	21	27	33
20	20	2.78	2.31	CFM	580	690	810	930	1040	1160	1390	1620	1850
				NC	<20	<20	<20	<20	<20	<20	21	28	33
22	22	3.36	2.85	CFM	710	850	1000	1140	1280	1420	1710	1990	2280
				NC	<20	<20	<20	<20	<20	<20	22	29	34
24	24	4.00	3.44	CFM	860	1030	1200	1380	1550	1720	2060	2410	2750
				NC	<20	<20	<20	<20	<20	<20	23	29	35
30	30	6.25	5.54	CFM	1390	1660	1940	2220	2490	2770	3330	3880	4430
				NC	<20	<20	<20	<20	<20	<20	25	32	37

Notes:

• Nominal size represents duct size. For lay-in applications, use neck size to determine data, not module size.

Test Standard

ANSI / ASHRAE Standard 70

Sound Levels

 NC is noise criteria curve that will not be exceeded at the operating point. This is determined by assuming a 10dB (ref: 10⁻¹² watts) room attenuation that is subtracted from the power levels in each of the 2nd thru 7th octave bands

Return Grilles and Registers

 Ps represents static pressure requirement for the grille ONLY. Add the pressure drop of the filter selected to determine the pressure drop for the assembly

- Total pressure can be calculated as Pt = Ps + Pv
- · All pressures are inches w.g.

Pressure

 To determine data for other sizes not shown, calculate Core Area as (Nom Width -1.75) x (Nom Height - 1.75) / 144. Find Core Area in table closest to calculated core area and find CFM value in that row to determine pressure and NC.